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Abstract

Rotation search has become a core routine for solving

many computer vision problems. The aim is to rotationally

align two input point sets with correspondences. Recently,

there is significant interest in developing globally optimal

rotation search algorithms. A notable weakness of global

algorithms, however, is their relatively high computational

cost, especially on large problem sizes and data with a high

proportion of outliers. In this paper, we propose a novel

outlier removal technique for rotation search. Our method

guarantees that any correspondence it discards as an out-

lier does not exist in the inlier set of the globally optimal

rotation for the original data. Based on simple geometric

operations, our algorithm is deterministic and fast. Used as

a preprocessor to prune a large portion of the outliers from

the input data, our method enables substantial speed-up

of rotation search algorithms without compromising global

optimality. We demonstrate the efficacy of our method in

various synthetic and real data experiments1.

1. Introduction

Given two point sets X = {xi}
N
i=1 and Y = {yi}

N
i=1

in 3D, we aim to find the 3D rotation R that aligns them,

i.e., such that Rxi ≈ yi for all i. Here, each (xi,yi) is

a pair of matching points. If there are no false matching

points or outliers, the best rotation in the least squares sense

can be obtained analytically [10, 1]. Otherwise, we seek the

rotation that agrees with as many of the pairs as possible

maximize
R, I⊆H

|I|

subject to ∠(Rxi,yi) ≤ ǫ, ∀i ∈ I,
(1)

where agreement is up to the inlier threshold ǫ. Here, H =
{1, . . . , N} indexes the set of all point matches, and ∠(·, ·)
denotes the angular distance. The optimal R∗ is consistent

with the largest possible subset I∗ ⊆ H of the data. Note

that given I∗ we can easily find R∗ and vice versa, thus, we

may quote I∗ or R∗ as the solution without ambiguity.

1Implementation is provided in the supplementary material.

RANSAC [6] can be applied to approximately solve (1).

Candidate rotations are hypothesized from randomly sam-

pled minimal subsets of two point matches [10] and evalu-

ated. Although RANSAC is very efficient, in general it does

not provide the optimal solution I∗. Formally, let Ĩ ⊆ H
be the result of RANSAC. We have that |Ĩ| ≤ |I∗|, and in

general Ĩ * I∗, i.e., genuine inliers may be discarded.

Hartley and Kahl [7] pioneered branch-and-bound (BnB)

as a viable technique for rotation search. BnB systemati-

cally partitions and prunes the rotation space until the so-

lution is found. Their algorithm was extended to include a

robust formulation [2] such as the one we use in (1). Un-

like RANSAC, BnB is guaranteed to find the globally op-

timal result. The solution of many computer vision prob-

lems have benefited from BnB rotation search as a subrou-

tine [5, 7, 15, 9, 13]; such as essential matrix and cam-

era pose estimation, hand-eye calibration, panoramic image

stitching, and point cloud registration.

Another class of global algorithms [12, 4] leverage on

the fact that the solution to (1) is equal to the solution of

the same problem on a subset ofH of size at most d, where

d is 3 for rotation search. The result R∗ is found by enu-

merating all
(

N
p

)

subsets of H for all p ≤ d and solving

each subset for R analytically (note that this differs from

“standard” RANSAC which solves for R via least squares

on subsets of size two). These algorithms have been demon-

strated successfully on similar applications.

A general weakness of global algorithms, however, is

their high computational cost, especially for data with large

sizes N and high outlier contamination rates. In the case

of [4], the number of unique subsets to test is enormous

even for moderate N (e.g., for N = 500 there are ≥ 20
million 3-subsets). An outlier rate in excess of 95% is also

frequently encountered in practice, e.g., in point cloud reg-

istration where 3D keypoint detection and matching tech-

niques [17, 14, 18] are much less accurate than their 2D

counterparts such as SIFT and SURF. These factors lead to

significant runtimes of BnB rotation search.

Our contribution is a novel guaranteed outlier removal

technique for rotation search. Specifically, our method is

able to reduce H to a subset H′ of point matches, in a way
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that any (xi,yi) discarded by reducingH toH′ is a genuine

outlier, i.e., any (xi,yi) that is removed does not belong to

I∗. More formally, our method ensures that I∗ ⊆ H′ ⊆ H,

which is a result RANSAC cannot guarantee.

We pose our technique as an efficient preprocessor to

the rotation search problem (1). Based on simple geometric

operations, our method is deterministic and fast. By aggres-

sively reducing the population of true outliers (almost 90%
can be eliminated), our method significantly accelerates the

global algorithms. For example, using our method before

BnB reduces the overall runtime by an order of magnitude.

Note that the global solution to the reduced data H′ equals

the global solution I∗ to the originalH.

Our work is closest in spirit to Svärm et al. [16], who

proposed a technique for camera localization from 2D-3D

correspondences. In their work, the usage of gravitational

sensors reduces camera localization to a 3DOF problem

(2D translation and 1D rotation). Their approach also con-

ducts a guaranteed outlier rejection scheme for the 2D-3D

point matches, before a globally optimal algorithm is in-

voked. Since our target problem (3DOF rotation search)

differs from Svärm et al.’s, the core geometric motivations

and operations of the two works are vastly different.

2. Guaranteed outlier removal

Using the angular distance renders the norm of the points

irrelevant. Henceforth, we take all the points to have unit

norm. The rotation search problem (1) can be rewritten as

maximize
k∈H

fk, (2)

where fk is defined as the maximum objective value of the

subproblem Pk, with k = 1, . . . , N :

maximize
Rk, Ik⊆H\{k}

|Ik|+ 1

subject to ∠(Rkxi,yi) ≤ ǫ, ∀i ∈ Ik,

∠(Rkxk,yk) ≤ ǫ.

(Pk)

In words, Pk seeks the rotation Rk that agrees with as many

of the data as possible, given that Rk must align (xk,yk).
Our reformulation (2) does not make the original prob-

lem (1) any easier - its utility derives from clarifying how

an upper bound on fk allows to identify outliers.

Let l ≤ |I∗| be a lower bound for the solution of the

rotation search problem (1). Our outlier removal technique

depends on the ability to calculate an upper bound f̂k for

the result of each Pk, i.e., f̂k ≥ fk. Given the lower and

upper bound values, the following result can be established.

Proposition 1 If f̂k < l, then (xk,yk) is a true outlier, i.e.,

k does not exist in the solution I∗ to (1).

Proof The proof is by contradiction. If k is in I∗, then we

must have that fk = |I∗|. However, if we are given that

f̂k < l, then fk < l ≤ |I∗|, which contradicts the previous

condition. Hence, k cannot exist in I∗. �

Our main algorithm (Sec. 4) applies Proposition 1 itera-

tively for k = 1, . . . , N to remove outliers. Our main con-

tribution is an efficient algorithm to calculate a tight upper

bound f̂k for Pk (Sec. 3) for each k. As a by-product, our

upper bound algorithm also computes a tight lower bound l
for (1) to enable efficient removal of true outliers.

3. Efficient algorithm for upper bound

Recall that any candidate rotation Rk to solve Pk must

bring xk within angular distance ǫ from yk, i.e.,

∠(Rkxk,yk) ≤ ǫ. (3)

We interpret Rk by decomposing it into two rotations

Rk = AB (4)

where we define B as a rotation that honors the condition

∠(Bxk,yk) ≤ ǫ, (5)

and A as a rotation about axis Bxk. Since A leaves Bxk

unchanged, the condition (5) and hence constraint (3) are

always satisfied. Fig. 1(a) illustrates this interpretation.

Solving Pk thus amounts to finding the combination of

the rotation B (a 2DOF problem, given (5)) and the rotation

angle of A (a total of 3DOF) that maximize the objective.

3.1. The ideal case

In the absence of noise and outliers, xi can be aligned

exactly with yi for all i. Based on (4), we denote the rota-

tion that solves Pk under this ideal case as

R̂k = ÂB̂, (6)

which can be solved as follows (refer also to Fig. 1(a)).

First, find a rotation B̂ that aligns xk exactly with yk, i.e.,

B̂xk = yk. (7)

For example, take B̂ as the rotation that maps xk to yk with

the minimum geodesic motion. To solve for Â, take any

i 6= k, then find the angle θ̂ of rotation about axis B̂xk that

maps B̂xi to yi. Then Â = exp (θ̂B̂xk), where exp (·) is

the exponential map as defined in [8, Eq. (3)]. The above

steps affirm that rotation estimation requires a minimum of

two point matches [10].

2166



(a) (b) (c)

Figure 1. (a) Interpreting rotation Rk according to (4). (b) The uncertainty region Lk(xi) (15). (c) This figure shows Sδ(θ)(Aθ,yk
B̂xi)

intersecting with Sǫ(yi) for a particular θ. We wish to find a bounding interval Θi ⊂ [−π, π] on θ for which the intersection is non-empty.

3.2. Uncertainty bound

In the usual case, we must contend with noise and out-

liers. The aim of this section is to establish a bound on the

position of xi when acted upon by the set of feasible rota-

tions Rk, i.e., those that satisfy (3) for Pk.

The set of B that maintain (5) cause Bxk to lie within a

spherical region of angular radius ǫ centered at yk, i.e.,

Bxk ∈ Sǫ(yk), (8)

where Sǫ(yk) := {x |∠(x,yk) ≤ ǫ} and ‖x‖ = 1. (9)

Since Bxk is the rotation axis of A, the interior of Sǫ(yk)
also represents the set of possible rotation axes for A. Fur-

ther, for any i 6= k, we can establish

∠(Bxi, B̂xi) = ∠(Bxk, B̂xk) (10)

= ∠(Bxk,yk) ≤ ǫ, (11)

where (10) is based on the fact that applying the same pair of

rotations on different points will transport the points across

the same angular distance. Hence, (11) also shows that the

set of feasible B cause Bxi to lie in a spherical region, i.e.,

Bxi ∈ Sǫ(B̂xi). (12)

Fig. 1(a) also shows Sǫ(yk) and Sǫ(B̂xi). The bound on

Rkxi can thus be analysed based on these two regions.

To make explicit the dependence of A on a rotation axis

a and angle θ, we now denote it as Aθ,a, where

Aθ,a = exp (θa). (13)

Let p be an arbitrary unit-norm point. Define

circ(p,a) := {Aθ,ap | θ ∈ [−π, π]} (14)

as the circle traced by p when acted upon by rotation Aθ,a

for all θ at a particular axis a.

The set of possible positions of Rkxi is then defined by

Lk(xi) := {circ(p,a) | p ∈ Sǫ(B̂xi),a ∈ Sǫ(yk)}. (15)

Fig. 1(b) illustrates this feasible region, which exists on the

unit sphere. The region is bounded within the two circles

circ(pn,an) and circ(pf ,af ), (16)

which are highlighted in Fig. 1(b). Intuitively, pn and an
(resp. pf and af ) are the closest (resp. farthest) pair of

points from Sǫ(B̂xi) and Sǫ(yk). Mathematically,

pn = exp
(

ǫB̂xi × yk/‖B̂xi × yk‖
)

B̂xi; (17)

an = exp
(

ǫyk × B̂xi/‖yk × B̂xi‖
)

yk; (18)

pf = exp
(

ǫyk × B̂xi/‖yk × B̂xi‖
)

B̂xi; and (19)

af = exp
(

ǫB̂xi × yk/‖B̂xi × yk‖
)

yk. (20)

Note that if B̂xi is antipodal to yk, the feasible region re-

duces to the spherical region S3ǫ(B̂xi).

Result 1 For any i 6= k, if Sǫ(yi) does not intersect with

Lk(xi), then (xi,yi) cannot be aligned by any rotation Rk

that satisfies (3). The correspondence (xi,yi) can then be

safely removed without affecting the result fk of Pk.

3.3. Reducing the uncertainty

For each point match (xi,yi) that survives the pruning

by Result 1, we reduce its uncertainty bound (15) into an

angular interval. This reduction is crucial for our efficient

upper bound algorithm to be introduced in Sec. 3.4.

Consider rotating an arbitrary unit-norm point p with

Aθ,u for a fixed angle θ and an axis u ∈ Sǫ(yk). We wish

to bound the possible locations of Aθ,up given the uncer-

tainty in u. To this end, we establish

max
u∈Sǫ(yk)

∠(Aθ,up,Aθ,yk
p) ≤ max

u∈Sǫ(yk)
‖θu− θyk‖2

= 2|θ| sin(ǫ/2), (21)
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Figure 2. (a) Solving for γi in the red triangle. Its cathetus is half of the longest segment connecting points in Sǫ(yi) and its hypotenuse

is the radius of circ(yi,yk). (b) To simplify the diagram and to aid intuition, the sphere in Fig. 1 is stereographically projected to the 2D

plane using the North Pole (yk) as the projection pole. Recall that the stereographic projection preserves circles [11], thus the shapes of all

the circles and spherical regions on the sphere are preserved. Note that stereographic projection is only for presentation and is not required

in practice. (c) Solving for βi in (31) using the proposed linear approximations. Note that the obtained solution β′

i is always greater than

the exact solution β∗

i , thus guaranteeing that the upper limit θbi of Θi is a valid bound.

where the first line is based on a well-known result of the

axis-angle representation (see [7, Lemma 2]), and the sec-

ond line occurs since Sǫ(yk) has an angular radius of ǫ.
Now we extend (21) to accommodate the uncertainty of

p itself as a point from Sǫ(B̂xi). We thus establish

max
p∈Sǫ(B̂xi)
u∈Sǫ(yk)

∠(Aθ,up,Aθ,yk
B̂xi)

≤ max
p∈Sǫ(B̂xi)
u∈Sǫ(yk)

∠(Aθ,up,Aθ,yk
p) + ∠(Aθ,yk

p,Aθ,yk
B̂xi)

≤ 2|θ| sin(ǫ/2) + ǫ. (22)

The 2nd line is due to the triangle inequality, while the 3rd

line applies (21) on the 1st term of the 2nd line. Define

δ(θ) = 2|θ| sin(ǫ/2) + ǫ. (23)

The inequality (22) states that for a fixed θ and for all u ∈
Sǫ(yk) and Bxi ∈ Sǫ(B̂xi), the point Aθ,uBxi lies in

Sδ(θ)(Aθ,yk
B̂xi). (24)

Fig. 1(c) depicts this spherical region. Observe that for all

θ ∈ [−π, π], the center of the region lies in circ(B̂xi,yk).
Intuitively, this is a circle of a fixed latitude on the globe

when yk is the “North Pole”. Further, the spherical region

attains the largest angular radius at θ = ±π.

For a pair (xi,yi), we wish to obtain a bound Θi (an

interval) on the range of θ that enable Aθ,uBxi to align

with yi, given the uncertainties u ∈ Sǫ(yk) and Bxi ∈

Sǫ(B̂xi). This is analogous to seeking a bound on the θ that

allows Sδ(θ)(Aθ,yk
B̂xi) to “touch” Sǫ(yi); see Fig. 1(c).

Henceforth, concepts from the spherical coordinate sys-

tem are used with reference to yk as the North Pole.

3.3.1 Degenerate cases

If B̂xi is close to yk, the North Pole may lie in Lk(xi). If

this occurs, we take Θi = [−π, π].

3.3.2 Non-degenerate cases

Define φ(yi) and ψ(yi) respectively as the azimuth and in-

clination of yi. The spherical region Sǫ(yi) is contained

between the meridians φ(yi)− γi and φ(yi) + γi, where

γi = arcsin

(

sin(ǫ)

sin(ψ(yi))

)

(25)

following the geometric considerations in Fig. 2(a). Let

θi ∈ [−π, π] be the rotation angle such that the point

Aθi,yk
B̂xi is on the meridian φ(yi). Refer to Fig. 2(b).

Case 1: θi ∈ [0, π]
This case is shown in Fig. 2(b). Define Θi = [θai , θ

b
i ].

The desired bounding interval Θi can be obtained by taking

θai = θi − γi − αi and θbi = θi + γi + βi, (26)

where αi is the largest value such that the spherical region

Sδ(θa

i
)(Aθa

i
,yk

B̂xi) (27)

still touches the meridian φ(yi) − γi, and βi is the largest

value such that the spherical region

Sδ(θb

i
)(Aθb

i
,yk

B̂xi) (28)

still touches the meridian φ(yi) + γi. Refer to Fig. 2(b). To

determine Θi, we must find αi and βi. From (23),

δ(θai ) = 2|θi − γi − αi| sin(ǫ/2) + ǫ and (29)

δ(θbi ) = 2|θi + γi + βi| sin(ǫ/2) + ǫ. (30)
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Applying the same geometric considerations in Fig. 2(a) on

the spherical regions (27) and (28), we have

sin(αi) =
sin(δ(θai ))

sin(ψ(xi))
, sin(βi) =

sin(δ(θbi ))

sin(ψ(xi))
. (31)

Note that the functions on both sides of each equation have

the unknowns αi and βi respectively.

Fig. 2(c) plots the two sine functions sin(βi) and

sin(δ(θbi ))/ sin(ψ(xi)). We consider only βi ∈ [0, π/2],
since the condition where the two functions do not inter-

sect before βi ≤ π/2 corresponds to the degeneracies in

Sec. 3.3.1; see supplementary material for proof. Further,

since usually ǫ≪ π, the period of the second sine function

2π

2 sin(ǫ/2)
≫ 2π (32)

is much greater than 2π, thus explaining the almost lin-

ear trend of the second sine function for βi ∈ [0, π/2]. A

largely identical plot occurs for the functions involving αi.

Analytically solving the equations in (31) is non-trivial.

However, since all that we require is a bounding interval Θi,

we can replace the sine functions with more amenable ap-

proximations that yield a valid bounding interval. An iden-

tical technique is used to solve for αi and βi respectively,

thus we describe our solution only for βi.
We replace sin(βi) with a lower-bounding two-piece lin-

ear function; see Fig. 2(c). To obtain an upper-bounding

line to sin(δ(θbi ))/ sin(ψ(xi)), we use Jordan’s inequality

sin(t) ≤ t for t ≤ π/2, (33)

which enables us to replace the second sine function with

δ(θbi )

sin(ψ(xi))
=

2|θi + γi + βi| sin(ǫ/2) + ǫ

sin(ψ(xi))
. (34)

This upper-bounding line is legitimate for

2|θi + γi + βi| sin(ǫ/2) + ǫ ≤ π/2, (35)

where in the worst case requires

2π sin(ǫ/2) + ǫ ≤ π/2 (36)

or ǫ ≤ π/(2π+2) ≡ 21.7°, which is more than adequate for

practical applications. Solving for βi in the manner above

allows us to compute the upper limit θbi in constant time.

Note that the resulting upper limit θbi may extend beyond

π; to “wrap around” the interval, we break Θi = [θai , θ
b
i ]

into two connected intervals [θai , π] and [θbi − 2π,−π].

Case 2: θi ∈ [−π, 0]
Case 2 is simply a mirror of Case 1 and the same steps

apply with the “directions” reversed.

Result 2 For any i 6= k, if Sǫ(yi) intersects with Lk(xi),
the range of angles θ such that ∠(Aθ,uBxi,yi) ≤ ǫ for

all u ∈ Sǫ(yk) and Bxi ∈ Sǫ(B̂xi) is bounded by Θi

computed according to Sec. 3.3.

3.4. Interval stabbing

For problem Pk, on the input point matches that remain

after pruning by the application of Result 1, we use Result 2

to convert them into a set of angular intervals {Θj}, where

each Θj = [θaj , θ
b
j ]. We aim to find the largest number of

point matches that can be aligned by the same rotation angle

θ. More formally, we seek the solution

Ok = maximize
θ∈[−π,π]

∑

j

I(θ ∈ [θaj , θ
b
j ]) (37)

where I(·) is an indicator function that returns 1 if the input

predicate is true and 0 otherwise. This is the well-known

interval stabbing problem, for which efficient deterministic

algorithms exist [3, Chap. 10]. We take f̂k := Ok + 1 as an

upper bound to the solution fk to Pk.

Proposition 2 f̂k := Ok + 1 ≥ fk.

Proof By Result 2, each interval Θj is an over-estimation

of the range of angles of rotation Aθ,u that permit the asso-

ciated point match to be aligned. The number Ok + 1 must

thus be greater than or equal to the maximum number of

point matches that can be aligned under problem Pk. �

As a by-product of interval stabbing, we derive

R̃k = Aθ̃,B̂xk
B̂, (38)

where θ̃ is an angle that globally solves (37). Aligning the

input data with R̃k thus provides a lower bound to the orig-

inal rotation search problem (1).

4. Main algorithm

We develop a guaranteed outlier removal algorithm

(GORE) for the rotation search problem (1). Algorithm 1

summarizes our method. Given a set of input point matches

H, our method iterates over each point match (xk,yk) and

performs two operations: seek an improved lower bound l
to problem (1) and an upper bound f̂k to subproblem Pk;

both steps are conducted simultaneously using our tech-

niques in Sec. 3. Both values are then compared to attempt

to reject the current point match as an outlier. The output

is a reduced set of point matches H′ ⊆ H guaranteed to

include the globally optimal solution I∗ to (1).

GORE is a deterministic algorithm, unlike RANSAC.

The worst case time complexity can be established as fol-

lows: for each k, the bounding interval Θi for each i 6= k
is obtained in constant time. Given N intervals, the stab-

bing problem (37) can be solved in O(N logN) time [3,

Chap. 10]. Thus, Line 5 in Algorithm 1 takes O(N logN)
time. In the worst case, Line 5 is performed N times, and

GORE thus consumes O(N2 logN) time.

As a whole, GORE contains only very simple geometric

operations. In Sec. 5, we demonstrate the extreme efficiency

of GORE in processing large input data sizes.
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Algorithm 1 Guaranteed outlier removal for rotation search

Require: Point matches {(xi,yi)}
N
i=1, inlier threshold ǫ.

1: H ← {1, 2, . . . , N}.
2: H′ ← H, O ← H, V ← ∅, and l← 0.

3: for all k ∈ O do

4: V ← V ∪ {k}.

5: Compute upper bound f̂k and suboptimal rotation

R̃k (Sec. 3) for problem Pk on data indexed byH′.

6: Ck ← {i | i ∈ H
′,∠(R̃kxi,yi) ≤ ǫ}.

7: lk ← |Ck|.
8: if lk > l then

9: l← lk.

10: O ← H′ \ Ck.

11: end if

12: if f̂k < l then

13: H′ ← H′ \ {k}.
14: end if

15: O ← O \ V .

16: end for

17: return {(xi,yi) | i ∈ H
′}.

5. Results

All algorithms were implemented in C++. Experiments

were conducted on a standard PC with a 2.70GHz CPU.

Our implementation of GORE is provided in the supple-

mentary material if the reader wishes to verify our results.

5.1. Synthetic data

A data instance was generated as follows: N points on

the unit-sphere were randomly produced to obtain set X .

Set X was randomly rotated to produce set Y , which was

then added with Gaussian noise of σ = 0.5° (recall that

we use the angular distance here). For a given outlier rate

ρ, ρN point matches (xi,yi) were randomly chosen from

(X ,Y) and resampled uniformly on the sphere to create

outliers. In our experiments, N ∈ {100, 250, 500} and

ρ = {0, 0.05, . . . , 0.9} were used. For each (N, ρ) com-

bination, 1000 data instances were generated and ǫ = 0.5°

was used in (1). The following approaches were tested:

• RANSAC: A confidence level of 0.99 was used for the

stopping criterion [6]. For each data instance, median

runtime over 100 runs were taken.

• GORE: Algorithm 1. No particular ordering for the

data was conducted beyond the order of generation.

• BnB: Following the method of [2, 7].

• GORE+BnB: Data remaining after GORE was fed to

BnB. The lower bound of BnB was also initialized as

the value of l at the termination of Algorithm 1.

• GORE+RANSAC: Data remaining after GORE was

fed to RANSAC. Global optimality is not guaranteed.

• RGORE+BnB: Same as GORE+BnB, but the initial

value of l in Algorithm 1 for GORE was obtained by

first running RANSAC to yield a suboptimal result Ĩ.

• GORE+aBnB: Same as GORE+BnB, but all the orig-

inal data was given to BnB (GORE was only used to

initialize the lower bound of BnB).

Since [4] was much slower even with very efficient solvers

(2 ms for each 3-subset), we do not show its results here.

Runtime comparisons The first row of Fig. 3 shows the

median total runtime over all data instances for the methods.

While RANSAC was faster than GORE at low outlier

rates, as the outlier rate increased, the runtime of RANSAC

increased exponentially. In contrast, the runtime of GORE

grew at a much lower rate. As expected, the runtime of

BnB also grew rapidly as the outlier rate increased. This

contrasts with the trend exhibited by GORE+BnB - as the

outlier rate increased, the total runtime decreased! This is

because at higher outlier rates, GORE removed more out-

liers and reduced the overall data population more aggres-

sively, hence BnB was able to find the global solution using

less time. Since the bulk of the runtime in GORE+BnB was

due to BnB, the total runtime decreased with outlier rate.

At lower outlier rates, GORE+BnB took longer than

“raw” BnB since there were fewer outliers to remove, but

steadily GORE+BnB began to outperform BnB. The perfor-

mance gain became significant at ≈ 70% outliers. At 90%
outliers, GORE+BnB was an order of magnitude faster than

BnB. As we will show in Sec. 5.2, outlier rates greater than

95% are actually very common in real data.

The results of RGORE+BnB at low outlier rates show

that initializing GORE with RANSAC only marginally re-

duced the total runtime. However, at high outlier rates, the

total runtime increased dramatically following the slowing

down of RANSAC. Crucially, the trend of GORE+aBnB

shows clearly that the dominating factor in speeding up BnB

is in reducing the data amount and outlier rate, not in ini-

tializing BnB with a good lower bound. Hence, hot starting

BnB with the suboptimal result |Ĩ| of RANSAC will not re-

duce runtime (not to mention that at high outlier rates, the

computation of RANSAC itself is a major burden).

Evaluation of suboptimal rotation Here we provide em-

pirical evidence that, although GORE cannot completely

eliminate all outliers, the best suboptimal rotation R̃k cal-

culated by Algorithm 1 is actually a good approximate so-

lution. On each data instance generated above, we calcu-

lated the error of the best R̃k to the globally optimal solu-

tion R∗, where the error is measured by d∠(R̃k,R
∗) =

‖ log(R̃k(R
∗)T )‖2 with log(·) the inverse of the expo-

nential map. The distance is interpreted as the minimum

geodesic motion between R̃kp and R∗p where p is an ar-

bitrary point [8]. We evaluated in the same way the rota-

tions estimated using SVD [1] from the raw data, and from
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Figure 3. Results on synthetic data. Row 1: Runtimes for different outlier ratios. Rows 2 and 3: Angular error of estimated rotations. To

avoid clutter, GORE+RANSAC’s error is not plotted in Row 2.

the data after outlier removal with GORE. The second row

in Fig. 3 shows error from all three rotations for increasing

outlier rate, while the third row shows error from R̃k and

GORE+RANSAC’s result.

As expected, SVD (least squares) rotation estimation is

easily biased by outliers. Also, the non-negligible error of

GORE+SVD points to the presence of remaining outliers

after GORE. The error of R̃k, however, remains low (≤
0.5°) even for high outlier rates. This indicates the efficacy

of GORE as a suboptimal rotation search method. Results

also show that a further improvement to R̃k can be achieved

by GORE+RANSAC at a small additional runtime.

5.2. Point cloud registration

Although practical settings usually demand full 6DOF

registration, rotation search for 3D point cloud registration

serves as an important subroutine in 6DOF methods (see,

e.g., [5]). In this experiment, we test the use of GORE

for rotational registration. We use data from the Stanford

repository, namely buddha, bunny, armadillo and dragon.

Two partially overlapping scans S1 and S2 were selected for

each object. Sizes of S1 and S2 are listed on the Column 1

in Table 1. S1 and S2 were centered and scaled such as their

centroids coincided with the origin and both point sets were

contained in the cube [−50, 50]3. Point matches between

S1 and S2 were obtained using ISS3D [18] keypoint detec-

tor and matching with the PFH [14] descriptor as available

in Point Cloud Library (http://pointclouds.org/).

A correspondence set was created by retaining N of the

Figure 4. Data instance for armadillo for N = 100. Green lines

represent the 10 inlier matches found by BnB. To avoid excessive

clutter, only half of the outlier matches (red lines) are displayed.

best point matches based on the L2-norm of the PFH de-

scriptors. For N ∈ {100, 250, 500}, the obtained inlier ra-

tios based on the threshold ǫ = 0.5° are listed in Column 3

in Table 1. Observe that the outlier rates in this problem are

extremely high, even reaching 99% in some data instances.

For each correspondence set, 10 different randomized rota-

tions were applied on S1 to produce 10 data instances for

rotation search; Fig. 4 depicts one such instance.

For GORE, a straightforward variant was used; the main

loop in Algorithm 1 was iterated until no more outliers

could be removed. Typically this required 3 to 10 passes

through the data. While this increased the duration of our

method, the total runtime was still relatively minuscule, as

evidenced in Table 1. We also executed RANSAC, BnB,

RANSAC+BnB (the suboptimal RANSAC result |Ĩ| was

used to initialize the lower bound of BnB) and GORE+BnB.

We recorded the following measures:

• lwbnd: objective value (1) of best suboptimal solution.
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Object N irat
GORE RANSAC BnB

RANSAC GORE

+BnB +BnB

lwbnd err (°) out time (s) lwbnd err (°) time (s) opt err (°) time (s) time (s) time (s)

buddha

|S1| = 4151
|S2| = 3901

100 0.09 6 0.23 53 0.009 7 0.36 0.164 9 0.37 0.225 0.389 0.074

250 0.05 9 0.31 178 0.040 10 0.24 0.583 12 0.22 0.980 1.561 0.116

500 0.03 13 0.35 390 0.112 14 0.31 1.366 17 0.27 2.875 4.211 0.237

750 0.02 13 0.34 590 0.304 14 0.32 4.127 17 0.27 7.565 11.827 0.630

1000 0.01 13 0.32 807 0.447 14 0.30 6.494 17 0.27 12.610 19.470 1.018

bunny

|S1| = 6533
|S2| = 6226

100 0.18 16 0.19 74 0.003 16 0.20 0.032 18 0.13 0.030 0.062 0.003

250 0.10 20 0.27 209 0.015 21 0.24 0.133 24 0.13 0.145 0.278 0.024

500 0.06 27 0.23 442 0.056 26 0.23 0.342 30 0.22 0.520 0.881 0.076

750 0.04 31 0.18 684 0.127 29 0.25 0.659 32 0.23 1.245 1.946 0.147

1000 0.04 32 0.19 924 0.219 30 0.24 1.220 35 0.14 2.445 3.764 0.269

armadillo

|S1| = 4508
|S2| = 4362

100 0.10 7 0.17 80 0.003 8 0.30 0.125 10 0.21 0.095 0.215 0.013

250 0.06 10 0.17 229 0.014 12 0.31 0.501 14 0.26 0.350 0.875 0.021

500 0.03 10 0.69 469 0.055 12 0.31 1.783 15 0.24 1.430 3.198 0.066

750 0.02 13 0.34 713 0.146 13 0.29 3.270 16 0.24 3.435 7.002 0.161

1000 0.01 13 0.34 958 0.233 13 0.31 6.843 16 0.50 7.150 14.505 0.264

dragon

|S1| = 5332
|S2| = 4683

100 0.20 19 0.22 71 0.004 18 0.20 0.024 20 0.24 0.060 0.079 0.014

250 0.12 29 0.11 205 0.016 29 0.15 0.068 30 0.25 0.175 0.241 0.034

500 0.07 30 0.18 446 0.055 31 0.17 0.257 33 0.22 0.565 0.827 0.065

750 0.05 33 0.15 693 0.167 33 0.16 0.506 35 0.17 1.340 1.908 0.184

1000 0.04 36 0.12 939 0.226 36 0.16 0.870 38 0.14 2.635 3.557 0.283

Table 1. Point cloud registration results.

• err (°): angular error in degrees of best suboptimal ro-

tation to true rotation.

• time (s): total runtime in seconds.

• opt: objective value (1) of global solution.

Table 1 lists the median values over all 10 data instances.

Due to the extremely high outlier rates, RANSAC was an

order of magnitude slower than GORE. On all the data in-

stances, GORE was able to terminate within 1 second, even

with multiple passes over the data. The most crucial out-

come is that the combination GORE+BnB was able to find

the globally optimal result with an order of magnitude less

time than raw BnB. This was due to the massive reduction

of true outliers before BnB - in this experiment, after GORE

the median problem size to BnB was just 50. Additionally,

the fact that RANSAC+BnB was slower than raw BnB in-

dicates the ineffectiveness of hot starting using RANSAC.

5.3. Image stitching

We follow the image stitching experiment in [4]. SIFT

correspondences are obtained across an image pair taken

with known camera intrinsics K1 and K2. The scene is suf-

ficiently far away to justify a homography H = K2RK−1
1

as an alignment function, where R is the rotation between

the views. The rotation R can be estimated by registering

the matching vectors backprojected from the SIFT keypoint

coordinates using the inverse calibration matrix.

Fig. 5 presents a challenging image pair where there is a

very small overlapping area. A total of 154 SIFT matches

were detected and 64 of them correspond to inliers. The

inlier threshold used was ǫ = 0.05°. GORE with multiple

repetitions eliminated all outliers in 10 ms; running BnB

after GORE would thus terminate immediately, since the

Figure 5. SIFT correspondences and stitching result of GORE.

best solution found by GORE equals to the global solution.

Due to limited space, we can only show one image stitch-

ing result here; see supplementary material for more results.

6. Conclusions

We have presented a guaranteed outlier removal tech-

nique for rotation search, in the sense that any datum it re-

moves cannot be in the globally optimal solution. Based

on simple geometric operations, our algorithm is determin-

istic and efficient. Experiments show that, by significantly

reducing a significant amount of the outliers, our method

greatly speeds up globally optimal rotation search.
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[16] L. Svärm, O. Enqvist, M. Oskarsson, and F. Kahl. Accu-

rate localization and pose estimation for large 3d models. In

CVPR, 2014. 2

[17] F. Tombari, S. Salti, and L. D. Stefano. Performance eval-

uation of 3D keypoint detectors. IJCV, 102(1–3):198–220,

2013. 1

[18] Y. Zhong. A shape descriptor for 3d object recognition. In

Proceedings ICCV 2009 Workshop 3DRR, 2009. 1, 7

2173


